121 research outputs found

    Learning Logistic Circuits

    Full text link
    This paper proposes a new classification model called logistic circuits. On MNIST and Fashion datasets, our learning algorithm outperforms neural networks that have an order of magnitude more parameters. Yet, logistic circuits have a distinct origin in symbolic AI, forming a discriminative counterpart to probabilistic-logical circuits such as ACs, SPNs, and PSDDs. We show that parameter learning for logistic circuits is convex optimization, and that a simple local search algorithm can induce strong model structures from data.Comment: Published in the Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI19

    RulE: Neural-Symbolic Knowledge Graph Reasoning with Rule Embedding

    Full text link
    Knowledge graph (KG) reasoning is an important problem for knowledge graphs. It predicts missing links by reasoning on existing facts. Knowledge graph embedding (KGE) is one of the most popular methods to address this problem. It embeds entities and relations into low-dimensional vectors and uses the learned entity/relation embeddings to predict missing facts. However, KGE only uses zeroth-order (propositional) logic to encode existing triplets (e.g., ``Alice is Bob's wife."); it is unable to leverage first-order (predicate) logic to represent generally applicable logical \textbf{rules} (e.g., ``x,y ⁣:x is y’s wifey is x’s husband\forall x,y \colon x ~\text{is}~ y\text{'s wife} \rightarrow y ~\text{is}~ x\text{'s husband}''). On the other hand, traditional rule-based KG reasoning methods usually rely on hard logical rule inference, making it brittle and hardly competitive with KGE. In this paper, we propose RulE, a novel and principled framework to represent and model logical rules and triplets. RulE jointly represents entities, relations and logical rules in a unified embedding space. By learning an embedding for each logical rule, RulE can perform logical rule inference in a soft way and give a confidence score to each grounded rule, similar to how KGE gives each triplet a confidence score. Compared to KGE alone, RulE allows injecting prior logical rule information into the embedding space, which improves the generalization of knowledge graph embedding. Besides, the learned confidence scores of rules improve the logical rule inference process by softly controlling the contribution of each rule, which alleviates the brittleness of logic. We evaluate our method with link prediction tasks. Experimental results on multiple benchmark KGs demonstrate the effectiveness of RulE

    Open-World Multi-Task Control Through Goal-Aware Representation Learning and Adaptive Horizon Prediction

    Full text link
    We study the problem of learning goal-conditioned policies in Minecraft, a popular, widely accessible yet challenging open-ended environment for developing human-level multi-task agents. We first identify two main challenges of learning such policies: 1) the indistinguishability of tasks from the state distribution, due to the vast scene diversity, and 2) the non-stationary nature of environment dynamics caused by partial observability. To tackle the first challenge, we propose Goal-Sensitive Backbone (GSB) for the policy to encourage the emergence of goal-relevant visual state representations. To tackle the second challenge, the policy is further fueled by an adaptive horizon prediction module that helps alleviate the learning uncertainty brought by the non-stationary dynamics. Experiments on 20 Minecraft tasks show that our method significantly outperforms the best baseline so far; in many of them, we double the performance. Our ablation and exploratory studies then explain how our approach beat the counterparts and also unveil the surprising bonus of zero-shot generalization to new scenes (biomes). We hope our agent could help shed some light on learning goal-conditioned, multi-task agents in challenging, open-ended environments like Minecraft.Comment: This paper is accepted by CVPR202

    Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

    Full text link
    Probabilistic Circuits (PCs) are a general and unified computational framework for tractable probabilistic models that support efficient computation of various inference tasks (e.g., computing marginal probabilities). Towards enabling such reasoning capabilities in complex real-world tasks, Liu et al. (2022) propose to distill knowledge (through latent variable assignments) from less tractable but more expressive deep generative models. However, it is still unclear what factors make this distillation work well. In this paper, we theoretically and empirically discover that the performance of a PC can exceed that of its teacher model. Therefore, instead of performing distillation from the most expressive deep generative model, we study what properties the teacher model and the PC should have in order to achieve good distillation performance. This leads to a generic algorithmic improvement as well as other data-type-specific ones over the existing latent variable distillation pipeline. Empirically, we outperform SoTA TPMs by a large margin on challenging image modeling benchmarks. In particular, on ImageNet32, PCs achieve 4.06 bits-per-dimension, which is only 0.34 behind variational diffusion models (Kingma et al., 2021)
    corecore